Fatty acid profile, total phenolic content and antioxidant capacity of seaweeds in Salinas Bay, Ecuador
DOI:
https://doi.org/10.22370/rbmo.2023.58.2.4238Palabras clave:
Chlorophyta, Phaeophyceae, Rhodophyta, DPPH, nutraceuticalsResumen
The coastal waters of Ecuador have emerged as a favorable environment for the growth and development of several species of edible macroalgae or seaweeds. In this study, fatty acid profiles, total soluble polyphenol content, and antioxidant capacity of seven species of macroalgae (four red algae, two brown algae and one green algae) collected from Salinas Bay, Santa Elena Province, Ecuador, were evaluated. Saturated fatty acids C14:0, C15:0, C16:0 and C18:0 were found in almost all organisms, from which palmitic acid showed the highest proportion (10.7-37.1%). Green and brown seaweeds exhibited a major content of unsaturated fatty acids. Monounsaturated fatty acid composition was represented by several isomers of C16:1 and C18:1, mainly palmitoleic (3.0-6.6%) and oleic (0.8-11.1%) acids. Polyunsaturated fatty acid composition ranged from 5.47 to 26.61%, with ratios of total n-6/n-3 acids lower than 3.3. Linoleic (C18:2, n-6, 1.16-7.73%) and eicosapentaenoic (C22:5, EPA, n-3, 1.44-5.92%) acids were found in the majority of the seaweeds. The total polyphenol content of the seaweeds was determined by the Folin-Ciocalteu method (765 nm), and ranged from 147.28 to 1,062.20 mg equivalents of gallic acid (GAE) per 100 g of dry seaweed. The antioxidant capacity was determined by the Trolox equivalent antioxidant capacity (517 nm). Only Acanthophora spicifera, Spatoglossum schroederi, and Ulva lactuca showed good radical-scavenging (14.18-3,379.47 mg Trolox equivalents (TE) per 100 g of dry seaweed). The results confirm the potential use of macroalgae in the study area as an important source of nutritional compounds, especially brown and green algae, which could be a recommended food supplement even in the treatment of some diseases.
Citas
Ahn JH, MH Kim, HJ Kwon, SY Choi & HY Kwon. 2013. Protective effects of oleic acid against palmitic acid-induced apoptosis in pancreatic AR42J cells and its mechanisms. Korean Journal of Physiology and Pharmacology 17(1): 43-50. <https://doi.org/10.4196/kjpp.2013.17.1.43>
Ainsworth EA & KM Gillespie. 2007. Estimation of total phenolic content and other oxidation substrates in plant tissues using Folin-Ciocalteu reagent. Nature Protocols 2(4): 875-877. <https://doi.org/10.1038/nprot.2007.102>
Aktaş S, P Ercetin, Z Altun, M Kantar & N Olgun. 2021. Safety of eicosapentaenoic acid in cancer treatment: Effect on cancer cells and chemotherapy in vitro. Nutrition and Cancer 73(4): 568-571. <https://doi.org/10.1080/01635581.2020.1781201>
Alagan VT, RN Valsala & KD Rajesh. 2017. Bioactive chemical constituent analysis, in vitro antioxidant and antimicrobial activity of whole plant methanol extracts of Ulva lactuca Linn. British Journal of Pharmaceutical Research 15(1): 1-14. <https://doi.org/10.9734/BJPR/2017/31818>
Bach L & JD Faure. 2010. Role of very-long-chain fatty acids in plant development, when chain length does matter. Comptes Rendus Biologies 333(4): 361-370. <https://doi.org/10.1016/j.crvi.2010.01.014>
Berneira L, C da Silva, T Poletti, M Ritter, M dos Santos, P Colepicolo & CM Pereira. 2020. Evaluation of the volatile composition and fatty acid profile of seven Antartic macroalgae. Journal of Applied Phycology 32: 3319-3329. <https://doi.org/10.1007/s10811-020-02170-9>
Biris-Dorhoi ES, D Michiu, CR Pop, AM Rotar, M Tofana, OL Pop, SA Socaci & AC Farcas. 2020. Macroalgae-A sustainable source of chemical compounds with biological activities. Nutrients 12(10): 3085. <https://doi.org/10.3390/nu12103085>
Buschmann AH, C Camus, J Infante, A Neori, Á Israel, MC Hernández-González, SV Pereda, JL Gomez-Pinchetti, A Golberg, N Tadmor-Shalev & AT Critchley. 2017. Seaweed production: overview of the global state of exploitation, farming and emerging research activity. European Journal Phycology 52(4): 391-406. <http://dx.doi.org/10.1080/09670262.2017.1365175>
Caf F, N Şen Özdemir, Ö Yilmaz, F Durucan & Í Ak. 2019. Fatty acid and lipophilic vitamin composition of seaweeds from Antalya and Çanakkale (Turkey). Grasas y Aceites 70(3): e312. <https://doi.org/10.3989/gya.0704182>
Čagalj M, D Skroza, G Tabanelli, F Özogul & V Šimat. 2021. Maximizing the antioxidant capacity of Padina pavonica by choosing the right drying and extraction methods. Processes 9(4): 587. <https://doi.org/10.3390/pr9040587>
Cai Q, H Huang, D Qian, K Chen, J Luo, Y Tian, T Lin & T Lin. 2013. 13-methyltetradecanoic acid exhibits anti-tumor activity on T-cell lymphomas in vitro and in vivo by down-regulating p-AKT and activating Caspase-3. PloS One 8(6): e65308. <https://doi.org/10.1371/journal.pone.0065308>
Chapman VJ & DJ Chapman. 1980. Seaweeds and their uses, 334 pp. Chapman and Hall, New York.
Chen L, T Liu, W Zhang, X Chen & J Wang. 2012. Biodiesel production from algae oil high in free fatty acids by two-step catalytic conversion. Bioresource Technology 111: 208-214. <http://dx.doi.org/10.1016/j.biortech.2012.02.033>
Chen X, L Li, X Liu, R Luo, G Liao, L Li, J Liu, J Cheng, Y Lu & Y Chen. 2018. Oleic acid protects saturated fatty acid mediated lipotoxicity in hepatocytes and rat of non-alcoholic steatohepatitis. Life Sciences 203: 291-304. <https://doi.org/10.1016/j.lfs.2018.04.022>
Cherry P, C O’Hara, PJ Magee, EM McSorley & PJ Allsopp. 2019. Risks and benefits of consuming edible seaweeds. Nutrition Reviews 77(5): 307-329. <https://doi.org/10.1093/nutrit/nuy066>
Cornish ML, AT Critchley & OG Mouritsen. 2017. Consumption of seaweeds and the human brain. Journal of Applied Phycology 29(5): 2377-2398. <http://dx.doi.org/ 10.1007/s10811-016-1049-3>
Cotas J, A Leandro, P Monteiro, D Pacheco, A Figueirinha, AMM Gonçalves, GJ da Silva & L Pereira. 2020. Seaweed phenolics: From extraction to applications. Marine Drugs 18(8): 384. <https://doi.org/10.3390/md18080384>
Cotas J, D Pacheco, AMM Gonçalves, P Silve, LG Carvalho & L Pereira. 2021. Seaweeds’ nutraceutical and biomedical potential in cancer therapy: a concise review. Journal of Cancer Metastasis and Treatment 7: 13. <https://doi.org/10.20517/2394-4722.2020.134>
Cruz MM, AB Lopes, AR Crisma, RCC de Sá, WMT Kuwabara, R Curi, PBM de Andrade & MIC Alonso-Vale. 2018. Palmitoleic acid (16:1n7) increases oxygen consumption, fatty acid oxidation and ATP content in white adipocytes. Lipids in Health and Disease 17: 55. <https://doi.org/10.1186/s12944-018-0710-z>
den Hartigh LJ. 2019. Conjugated linoleic acid effects on cancer, obesity, and atherosclerosis: A review of pre-clinical and human trials with current perspectives. Nutrients 11(2): 370. <https://doi.org/10.3390/nu11020370>
Ditchburn JL & CB Carballeira. 2019. Versatility of the humble seaweed in biomanufacturing. Procedia Manufacturing 32: 87-94. <https://doi.org/10.1016/j.promfg.2019.02.187>
Ebada SS, RA Edrada, W Lin & P Proksch. 2008. Methods for isolation, purification and structural elucidation of bioactive secondary metabolites from marine invertebrates. Nature Protocols 3(12): 1820-1831. <https://doi.org/10.1038/nprot.2008.182>
El-Maghraby DM & EM Fakhry. 2015. Lipid content and fatty acid composition of Mediterranean macro-algae as dynamic factors for biodiesel production. Oceanologia 57(1): 86-92. <https://doi.org/10.1016/j.oceano.2014.08.001>
El-Sheekh MM, RAEK El-Shenody, EA Bases & SM El-Shafay. 2021. Comparative assessment of antioxidant activity and biochemical composition of four seaweeds, Rocky Bay of Abu Qir in Alexandria, Egypt. Food Science and Technology (Campinas) 41(Suppl. 1): 29-40. <https://doi.org/10.1590/fst.06120>
Ganesan AR, U Tirwari & G Rajauria. 2019. Seaweed nutraceuticals and their therapeutic role in disease prevention. Food Science and Human Wellness 8(3): 252-263. <https://doi.org/10.1016/j.fshw.2019.08.001>
Ganesan AR, K Subramani, M Shanmugam, P Seedevi, S Park, AH Alfarhan, R Rajagopal & B Balasubramanian. 2020. A comparison of nutritional value of underexploited edible seaweeds with recommended dietary allowances. Journal of King Saud University-Science 32(1): 1206-1211. <https://doi.org/10.1016/j.jksus.2019.11.009>
Gomez-Zavaglia A, MA Prieto-Lage, C Jimenez-Lopez, JC Mejuto & J Simal-Gandara. 2019. The potential of seaweeds as a source of functional ingredients of prebiotic and antioxidant value. Antioxidants 8(9): 406. <https://doi.org/10.3390/antiox8090406>
Grogan DW & JE Cronan. 1997. Cyclopropane ring formation in membrane lipids of bacteria. Microbiology and Molecular Biology Reviews 61(4): 429-441. <https://mmbr.asm.org/content/mmbr/61/4/429.full.pdf>
Hurd CL, PJ Harrison, K Bischof & CS Lobban. 2014. Seaweed ecology and physiology, 551 pp. Cambridge University Press, Cambridge.
Inoue-Yamauchi A, H Itagaki & H Oda. 2018. Eicosapentaenoic acid attenuates obesity-related hepatocellular carcinogenesis. Carcinogenesis 39(1): 28-35. <https://doi.org/10.1093/carcin/bgx112>
Ismail GA. 2017. Biochemical composition of some Egyptian seaweeds with potent nutritive and antioxidant properties. Food Science and Technology (Campinas) 37(2): 294-302. <http://dx.doi.org/10.1590/1678-457x.20316>
Kumar MS & SA Sharma. 2021. Toxicological effects of marine seaweeds: a cautious insight for human consumption. Critical Reviews in Food Science and Nutrition 61(3): 500-521. <https://doi.org/10.1080/10408398.2020.1738334>
Li X, X Bi, S Wang, Z Zhang, F Li & AZ Zhao. 2019. Therapeutic potential of ω-3 polyunsaturated fatty acids in human autoimmune diseases. Frontiers in Immunology 10: 2241-2254. <https://dx.doi.org/10.3389/fimmu.2019.02241>
Lin T, X Yin, Q Cai, X Fan, K Xu, L Huang, J Luo, J Zheng & J Huang. 2012. 13-methyltetradecanoic acid induces mitochondrial-mediated apoptosis in human bladder cancer cells. Urologic Oncology: Seminars and Original Investigations 30(3): 339-345. <https://doi.org/10.1016/j.urolonc.2010.04.011>
Litchfield C. 1972. Analysis of triglycerides, 374 pp. Academic Press, New York.
Maedler K, J Oberholzar, P Bucher, GA Spinas & MY Donath. 2003. Monounsaturated fatty acids prevent the deleterious effects of palmitate and high glucose on human pancreatic β-Cell Turnover and function. Diabetes 52(3): 726-733. <https://doi.org/10.2337/diabetes.52.3.726>
Manam VK & M Subbaiah. 2020. Phytochemical, amino acid, fatty acid and vitamin investigation of marine seaweeds Colpomenia sinuosa and Halymenia porphyroides collected along southeast coast of Tamilnadu, India. World Journal of Pharmaceutical Research 9(4): 1088-1102. <10.20959/wjpr20204-17091>
Marangoni F, C Agostoni, C Borghi, AL Catapano, H Cena, A Ghiselli, C La Vecchia, G Lercker, E Manzato, A Pirillo, G Riccardi, P Risé, F Visioli & A Polia. 2020. Dietary linoleic acid and human health: Focus on cardiovascular and cardiometabolic effects. Atherosclerosis 292: 90-98. <https://doi.org/10.1016/j.atherosclerosis.2019.11.018>
Marinho GS, ADM Sørensen, H Safafar, AH Pedersen & SL Holdt. 2019. Antioxidant content and activity of the seaweed Saccharina latissima: a seasonal perspective. Journal of Applied Phycology 31: 1343-1354. <https://doi.org/10.1007/s10811-018-1650-8>
Mason RP, P Libby & DL Bhatt. 2020. Emerging mechanisms of cardiovascular protection for the omega-3 fatty acid eicosapentaenoic acid. Arteriosclerosis, Thrombosis, and Vascular Biology 40(5): 1135-1147. <https://doi.org/10.1161/ATVBAHA.119.313286>
McCauley JI, BJ Meyer, PC Winberg, M Ranson & D Skropeta. 2015. Selecting Australian marine macroalgae based on the fatty acid composition and anti-inflammatory activity. Journal of Applied Phycology 27(5): 2111-2121. <https://doi.org/10.1007/s10811-014-0465-5>
McLafferty FW. 2011. Wiley Registry/NIST 2011 Mass spectral library. Wiley, Hoboken. [software]
Miralles J, M Aknin, L Micouin, EM Gaydou & JM Kornprobst. 1990. Cyclopentyl and ω-5 monounsaturated fatty acids from red algae of the Solieriaceae. Phytochemistry 29(7): 2161-2163. <https://doi.org/10.1016/0031-9422(90)83029-Z>
Mohamed N, A Abdullah, SA Mutalib, A Elias & RAM Repin. 2018. Antioxidant activity of dried and rehydrated Kappaphycus alvarezii from Langkawi, Kedah and Semporna, Sabah. International Journal of ChemTech Research 11(5): 324-330. <http://dx.doi.org/10.20902/IJCTR.2018.110535>
Mouritsen OG. 2013. Seaweeds: edible, available, and sustainable, 304 pp. University of Chicago Press, Chicago.
Nabavi SF, S Bilotto, GL Russo, IE Orhan, S Habtemariam, M Daglia, KP Devi, MR Loizzo, R Tundis & SM Nabavi. 2015. Omega-3 polyunsaturated fatty acids and cancer: Lessons learned from clinical trials. Cancer and Metastasis Reviews 34: 359-380. <http://dx.doi.org/10.1007/s10555-015-9572-2>
Oucif H, M Benaissa, SA Mehidi, R Prego, SP Aubourg & SMEA Abi-Ayad. 2020. Chemical composition and nutritional value of different seaweeds from the west Algerian coast. Journal of Aquatic Food Product Technology 29(1): 90-104. <https://doi.org/10.1080/10498850.2019.1695305>
Peñalver R, JM Lorenzo, G Ros, R Amarowicz, M Pateiro & G Nieto. 2020. Seaweeds as a functional ingredient for a healthy diet. Marine Drugs 18(6): 301. <https://doi.org/10.3390/md18060301>
Pereira L. 2021. Macroalgae. Encyclopedia 1(1): 177-188. <https://doi.org/10.3390/encyclopedia1010017>
Rioux LE, L Beaulieu & SL Turgeon. 2017. Seaweeds: A traditional ingredient for new gastronomic sensation. Food Hydrocolloid 68: 255-265. <http://dx.doi.org/10.1016/j.foodhyd.2017.02.005>
Santos JP, F Guihéneuf, G Fleming, F Chow & DB Stengel. 2019. Temporal stability in lipid classes and fatty acid profiles of three seaweed species from the north-eastern coast of Brazil. Algal Research 41: 101572. <https://doi.org/10.1016/j.algal.2019.101572>
Sasadara MMV & IGP Wirawan. 2021. Effect of extraction solvent on total phenolic content, total flavonoid content, and antioxidant activity of Bulung Sangu (Gracilaria sp.) Seaweed. IOP Conference Series: Earth and Environmental Science 712: 012005. <https://doi.org/10.1088/1755-1315/712/1/012005>
Schmid M, LGK Kraft, LM van der Loos, GT Kraft, P Virtue, PD Nichols & CL Hurd. 2018. Southern Australian seaweeds: A promising resource for omega-3 fatty acids. Food Chemistry 265: 70-77. <https://doi.org/10.1016/j.foodchem.2018.05.060>
Shannon E & N Abu-Ghannam. 2019. Seaweeds as nutraceuticals for health and nutrition. Phycologia 58: 563-577. <https://doi.org/10.1080/00318884.2019.1640533>
Susanto E, AS Fahmi, M Abe, M Hosokawa & K Miyashita. 2019. Variation in lipid components from 15 species of tropical and temperate seaweeds. Marine Drugs 17(11): 630. <https://dx.doi.org/10.3390/md17110630>
Tanna B & A Mishra. 2018. Metabolites unravel nutraceutical potential of edible seaweeds: An emerging source of functional food. Comprehensive Reviews in Food Science and Food Safety 17(6): 1613-1624. <http://dx.doi.org/10.1111/1541-4337.12396>
Uracz W, Z Kopański, Z Maslyak & B Pruszkowska. 2014. Polyunsaturated fatty acids. Journal of Public Health, Nursing and Medical Rescue 2: 17-21. <http://pzpr.eu/numery/2014_2/201423.pdf>
Uribe E, A Vega-Gálvez, V García, A Pastén, J López & G Goñi. 2019. Effect of different drying methods on phytochemical content and amino acid and fatty acid profiles of the green seaweed, Ulva spp. Journal of Applied Phycology 31: 1967-1979. <https://doi.org/10.1007/s10811-018-1686-9>
Wekre ME, K Kåsin, J Underhaug, B Holmelid & M Jordheim. 2019. Quantification of polyphenols in seaweeds: A case study of Ulva intestinalis. Antioxidants 8(12): 612. <https://doi.org/10.3390/antiox8120612>
Yang Z, S Liu, X Chen, H Chen, M Huang & J Zheng. 2000. Induction of apoptotic cell death and in vivo growth inhibition of human cancer cells by a saturated branched-chain fatty acid, 13-methyltetradecanoic acid. Cancer Research 60(3): 505‐509.
Yang ZH, M Pryor, A Noguchi, M Sampson, B Johnson, M Pryor, K Donkor, M Amar & AT Remaley. 2019. Dietary palmitoleic acid attenuates atherosclerosis progression and hyperlipidemia in low-density lipoprotein receptor-deficient mice. Molecular Nutrition & Food Research 63(12): e1999120. <https://dx.doi.org/10.1002%2Fmnfr.201900120>
Zhang R, J Sun, Y Li & D Zhang. 2020. Associations of n-3, n-6 fatty acids intakes and n-6:n-3 ratio with the risk of depressive symptoms: NHANES 2009-2016. Nutrients 12(1): 240. <https://doi.org/10.3390/nu12010240>
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2023 Haydelba D’Armas, Carmita Jaramillo-Jaramillo, Mayra D’Armas, Gabriel José Ordaz-González
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial 4.0.
• Los autores que publican en la RBMO transfieren sus derechos de publicación a la Universidad de Valparaíso, conservando los derechos de propiedad intelectual para difundir ampliamente el artículo y la revista en cualquier formato.
• La RBMO autoriza el uso de figuras, tablas y extractos breves de su colección de manuscritos, en trabajos científicos y educacionales, siempre que se incluya la fuente de información.