Microphytoplanktonic assemblage in a region with upwelling events on the north coast of Bahia, Brazil
DOI:
https://doi.org/10.22370/rbmo.2024.59.1.4346Palabras clave:
Marine microalgae, summer blooms, tropical coastal regionsResumen
This study aimed to characterize seasonal changes in microphytoplankton composition and abundance on Bahia continental shelf, a region with upwelling events. Semi-annual sampling was conducted during summer and winter from 2017 to 2021 at nine points. Microphytoplankton was sampled using a conical plankton net through horizontal subsurface drags, using a flowmeter coupled to the net, to measure the total volume of filtered water. Temperature and salinity were measured in situ, presenting typical values of tropical waters. In addition, dissolved inorganic nutrient concentration corroborated a tropical marine oligotrophic pattern. A total of 151 taxa were identified in the region, with the phyla Heterokontophyta and Dinoflagellata being the most representative, as is typically recorded in tropical coastal regions. The density ranged from 6.08 × 104 to 3.38 × 108 cells L-1, with higher average values in summer. Although cyanobacteria accounted for only 3.2% of species richness in the region, due to summer blooms of Trichodesmium erythraeum (2018, 2019, and 2021), it was the most abundant group throughout the study. It was observed that upwelling events do not seem to establish favorable conditions for marked seasonal changes in microphytoplankton composition and abundance. Trichodesmium erythraeum blooms are closely related to physiology and ecological capacity of this species. Except for bloom periods, the study area presented a high species richness and diversity throughout the analyzed time series.
Citas
Affe HMJ, TA Caires, EM Silva & JMC Nunes. 2016. Floración de Trichodesmium erythraeum en la región costera tropical de Brasil. Revista de Biología Marina y Oceanografía 51(1): 175-179. <http://dx.doi.org/10.4067/S0718-19572016000100017>
Affe HMJ, M Menezes & JMC Nunes. 2018. Microphytoplankton in a tropical oligotrophic estuarine system: spatial variations and tidal cycles. Brazilian Journal of Botany 41: 337-349. <http://dx.doi.org/10.1007/s40415-018-0447-y>
Affe HMJ, LPN Santos, MFD Santos & JMC Nunes. 2019. Marine microalgae on the southern coast of Bahia, Brazil: composition and new records of phytoplankton species. Rodriguésia 70: 1-6. <http://dx.doi.org/10.1590/2175-7860201970052>
Affe HMJ, LP Conceição, DSB Rocha, LAO Proença & JMC Nunes. 2021. Phytoplankton community in a tropical estuarine gradient after an exceptional harmful bloom of Akashiwo sanguinea (Dinophyceae) in the Todos os Santos Bay. Ocean and Coastal Research 69: e21008. <http://doi.org/10.1590/2675-2824069.20-004hmdja>
Agawin NS, A Tovar-Sánchez, KK de Zarruk, CM Duarte & S Agustí. 2013. Variability in the abundance of Trichodesmium and nitrogen fixation activities in the subtropical NE Atlantic. Journal of Plankton Research 35(5): 1126-1140. <https://doi.org/10.1093/plankt/fbt059>
Aguiar AL, M Cirano, M Marta-Almeida, GC Lessa & A Valle-Levinson. 2018. Upwelling processes along the South Equatorial Current bifurcation region and the Salvador Canyon (13°S), Brazil. Continental Shelf Research 171: 77-96. <https://doi.org/10.1016/j.csr.2018.10.001>
Alonso-Sáez L, E Vázquez-Domínguez, C Cardelús, J Pinhassi, MM Sala, I Lekunberri, V Balagué, M Vila-Costa, F Unrein, R Massana, R Simó & JM Gasol. 2008. Factors Controlling the Year-Round Variability in Carbon Flux Through Bacteria in a Coastal Marine System. Ecosystems 11: 397-409. <https://doi.org/10.1007/s10021-008-9129-0>
Ayres M, M Ayres-Júnior, DL Ayres & AA Santos. 2007. BioEstat. Aplicações estatísticas nas áreas as ciências bio-médicas, 380 pp. Instituto Mamirauá, Belém.
Balech E. 1988. Los dinoflagelados del Atlántico Sudoccidental, 310 pp. Instituto Español de Oceanografia, Madrid.
Barton AD, BA Ward, RG Williams & MJ Follows. 2014. The impact of fine-scale turbulence on phytoplankton community structure. Limnology and Oceanography: Fluids & Environments 4: 34-49. <https://doi.org/10.1215/21573689-2651533>
Bif MB & JS Yunes. 2017. Distribution of the marine cyanobacteria Trichodesmium and their association with iron-rich particles in the South Atlantic Ocean. Aquatic Microbial Ecology 78(2): 107-119. <https://doi.org/10.3354/ame01810>
Brandini FP. 1988. Composição e distribuição do fitoplâncton na região sudeste do Brasil e suas relações com as massas de água (Operação Sudeste julho/agosto 1982). Ciência e Cultura 40(4): 334-341.
Capone DG, JP Zehr, HW Paerl, B Bergman & EJ Carpenter. 1997. Trichodesmium, a globally significant marine cyanobacterium. Science 276(5316): 1221-1229.
Capone DG, JA Burns, JP Montoya, A Subramaniam, C Mahaffey, T Gunderson & EJ Carpenter. 2005. Nitrogen fixation by Trichodesmium spp., an important source of new nitrogen to the tropical and subtropical North Atlantic Ocean. Global Biogeochemical Cycles 19: 1-17. <https://doi.org/10.1029/2004GB002331>
Carpenter EJ & CC Price. 1976. Marine Oscillatoria (Trichodesmium), explanation for aerobic nitrogen fixation without heterocysts. Science 191: 1278-1280. <https://doi.org/10.1126/science.1257749>
Carvalho M, SMJ Gianesella & FMP Saldanha-Corrêa. 2008. Trichodesmium erythraeum bloom on the continental shelf off Santos, Southeast Brazil. Brazilian Journal of Oceanography 56(4): 307-311. <https://doi.org/10.1590/S1679-87592008000400006>
Carvalho RCQ, MVJ Cutrim, AS Eschrique, ACG Azevedo-Cutrim, EG Moreira, PCA Silveira & JM Coêlho. 2016. Microphytoplankton composition, chlorophyll-a concentration and environmental variables of the Maranhão Continental Shelf, Northern Brazil. Latin American Journal of Aquatic Research 44: 256-266. <http://dx.doi.org/10.3856/vol44-issue2-fulltext-7>
Cassie RM. 1962. Frequency distribution models in the ecology of plankton and other organisms. Journal of Animal Ecology 31(1): 65-92. <http://dx.doi.org/10.2307/2333>
Cirano M & GC Lessa. 2007. Oceanographic characteristics of Baía de Todos os Santos, Brazil. Revista Brasileira de Geofísica 25(4): 363-387. <https://doi.org/10.1590/S0102-261X2007000400002>
Cleve-Euler A. 1955. Die Diatomeen von Schweden und Finland, Teil IV. Biraphideae 2. Kungliga Svenska Vetenskapsakademiens Handlingar, ser. IV 5(4): 1-232. Alquimist e Wiksells Boktryckeri, Stockholm.
Conceição LP, HMJ Affe, DML Silva & JMC Nunes. 2021. Spatio-temporal variation of the phytoplankton community in a tropical estuarine gradient, under the influence of river damming. Regional Studies in Marine Science 43: 101642. <https://doi.org/10.1016/j.rsma.2021.101642>
Cupp EE. 1943. Marine plankton diatoms of the west coast of North America, 237 pp. University of California Press, London.
Detoni AMS & AM Ciotti. 2020. Trichome abundance, chlorophyll content and the spectral coefficient for light absorption of Trichodesmium slicks observed in the Southwestern Atlantic. Journal of Plankton Research 42(2): 135-139. <https://doi.org/10.1093/plankt/fbaa009>
Detoni AMS, AM Ciotti, PHR Calil, VM Tavano & JS Yunes. 2016. Trichodesmium latitudinal distribution on the shelf break in the southwestern Atlantic Ocean during spring and autumn. Global Biogeochemical Cycles 30: 1738-1753. <https://doi.org/10.1002/2016GB005431>
Dominguez JML, RP da Silva, AS Nunes & AFM Freire. 2013. The narrow, shallow, low-accommodation shelf of central Brazil: sedimentology, evolution, and human uses. Geomorphology 203: 46-59. <https://doi.org/10.1016/j.geomorph.2013.07.004>
Eskinazi-Leça E, ML Koening & MGG Silva-Cunha. 2004. Estrutura e dinâmica da comunidade fitoplanctônica. Em: Eskinazi-Leça E, S Neumann-Leitão & MF Costa (eds). Oceanografia um cenário tropical Recife, pp. 353-373. Universidade Federal de Pernambuco, Pernambuco.
Fernandes LF & FP Brandini. 2004. Diatom associations in shelf waters off Parana State, Southern Brazil: annual variation in relation to environmental factors. Brazilian Journal of Oceanography 52(1): 19-34. <http://dx.doi.org/10.1590/S1679-87592004000100003>
Gianesella-Galvão SMF, MPF Costa & MBB Kutner. 1995. Bloom of Oscillatoria (Trichodesmium) erythraea (Ehr.) Kutz. in coastal waters of the Southern Atlantic. Publicação Especial do Instituto Oceanográfico 11: 133-140.
Grasshoff K, M Ehrhardt & K Kremling. 1983. Methods of seawater analysis, 419 pp. Verlag Chemie, Weinheim.
Guiry MD & GM Guiry. 2024. Algaebase. World-wide electronic publication, National University of Galway, Galway. <https://www.algaebase.org>
Hammer Ø, DAT Harper & PD Ryan. 2001. PAST: Paleontological Statistics Software Package for Education and Data Analysis. Palaeontologia Electronica 4(1): 9 pp. <https://palaeo-electronica.org/2001_1/past/issue1_01.htm>
Hatje V & JB Andrade. 2009. Baía de Todos os Santos: Aspectos oceanográficos, 304 pp. EDUFBA, Salvador.
Hegde S, AC Anil, JS Patil, S Mitbavkar, V Krishnamurthy & VV Gopalakrishna. 2008. Influence of environmental settings on the prevalence of Trichodesmium spp. in the Bay of Bengal. Marine Ecology Progress Series 356: 93-101. <https://doi.org/10.3354/meps07259>
Hernández-Becerril DU. 1996. A morphological study of Chaetoceros species (Bacillariophyta) from the plankton of the Pacific Ocean of Mexico. Bulletin of National History Museum of London 26(1): 1-73.
Hood RR, AF Michaels, DG Capone & DB Olson. 2001. Modeling the effect of nitrogen fixation on carbon and nitrogen fluxes at BATS. Deep-Sea Research II 48: 1609-1648. <https://doi.org/10.1016/S0967-0645(00)00160-0>
Hutchinson GE. 1961. The paradox of the plankton. American Naturalist 95: 137-145.
Jeffrey SW & GF Humphrey. 1975. New spectrophotometric equations for determining chlorophylls a, b, c1 and c2 in higher plants, algae, and natural phytoplankton. Biochemie und Physiologie der Pflanzen 167: 194-204. <https://doi.org/10.1016/S0015-3796(17)30778-3>
Kämpf J & P Chapman. 2016. Upwelling systems of the world: A scientific journey to the most productive marine ecosystems. Springer, Cham. <https://doi.org/10.1007/978-3-319-42524-5_8>
Karl DM, R Letelier, DV Hebel, DF Bird & CD Winn. 1992. Trichodesmium blooms and new nitrogen in the north Pacific gyre. In: Carpenter EJ, DG Capone & JG Rueter (eds). Marine pelagic Cyanobacteria: Trichodesmium and other Diazotrophs, pp. 219-237. Kluwer Academic Publishers, Dordrecht. <http://dx.doi.org/10.1023/A:1015798105851>
Knoppers BA, W Ekau, JAG Figueiredo & GA Soares. 2002. Zona costeira e plataforma continental do Brasil. In: Pereira RC & A Soares- Gomes (eds). Biologia marinha, pp. 353-361. Interciência, Rio de Janeiro.
Koening ML & CG Lira. 2005. O gênero Ceratium Schrank (Dinophyta) na plataforma continental e águas oceânicas do Estado de Pernambuco, Brasil. Acta Botanica Brasilica 19(2): 391-397. <https://doi.org/10.1590/S0102-33062005000200022>
Koening ML & SJ Macêdo. 1999. Hydrology and phytoplankton community structure at Itamaracá-Pernambuco (Northeast Brazil). Brazilian Archives of Biology and Technology 42(4): 381-392. <https://doi.org/10.1590/S1516-89131999000400002>
Koening ML, BE Wanderley & SJ Macedo. 2009. Microphytoplankton structure from the neritic and oceanic regions of Pernambuco State-Brazil. Brazilian Journal of Biology 69: 1037-1046. < https://doi.org/10.1590/S1519-69842009000500007>
Leps J & P Smilauer. 2003. Multivariate analysis of ecological data using CANOCO This Zhurnal Eksperimental'noi i Teoreticheskoi Fiziki. <https://doi.org/10.1017/CBO9780511615146>
Lessa G, MFL Souza, PO Mafalda Jr, DF Gomes, CS Souza, C Teixeira, JR Souza & MR Zucchi. 2018. Variabilidade intra-anual da oceanografia da Baía de Todos os Santos: evidências de três anos de monitoramento. In: Hatje V, LMV Dantas & J Andrade (eds). Baía de Todos os Santos: Avanços nos estudos de longo prazo, pp. 155-192. EDUFBA, Salvador.
Letelier RM & DM Karl. 1996. Role of Trichodesmium spp. in the productivity of the subtropical North Pacific Ocean. Marine Ecology Progress Series 133: 263-273. <http://dx.doi.org/10.3354/meps133263>
Marengo JA, LM Alves, RCS Alvala, AP Cunha, S Brito & OLL Moraes. 2018. Climatic characteristics of the 2010-2016 droughts in the semiarid Northeast Brazil region. Anais da Academia Brasileira de Ciências 90(2), Supl. 1: 1973-1985. <https://doi.org/10.1590/0001-3765201720170206>
Monteiro JJF, EE Leça, ML Koening & SJ Macedo. 2010. New record of Trichodesmium thiebautii Gomont ex Gomont (Oscillatoriales - Cyanophyta) for the continental shelf of northeast Brazil. Acta Botanica Brasilica 24(4): 1104-1106. <https://doi.org/10.1590/S0102-33062010000400027>
Monteiro JJF, EE Leça, ML Koening & SJ Macedo. 2012. Distribution and annual variation of Trichodesmium thiebautii Gomont Ex Gomont (Oscillatoriales - cyanophyta) in tropical waters of northeastern Brazil (Western Atlantic). Tropical Oceanography 40(2): 319-326. <https://doi.org/10.5914/tropocean.v40i2.5409>
Moser GAO, RA Takanohashi, CM Braz, DT Lima, FV Kirsten, JV Guerra, AM Fernandes & RCG Pollery. 2014. Phytoplankton spatial distribution on the Continental Shelf off Rio de Janeiro, from Paraíba do Sul River to Cabo Frio. Hydrobiologia 728: 1-21. <https://doi.org/10.1007/s10750-013-1791-3>
Moutin T, N Van Den Broeck, B Beker, C Dupouy, P Rimmelin, A Le Bouteiller. 2005. Phosphate availability controls Trichodesmium spp. biomass in the SW Pacific Ocean. Marine Ecology Progress Series 297: 15-21. <http://dx.doi.org/10.3354/meps297015>
Naithirithi TC, AKA Lima & T Chellappa. 2005. Occurrence and dominance of an invasive toxin producing marine cyanobacteria into mangrove environment of the Potengi river estuary, in Natal, Rio Grande do Norte State, Brazil. Arquivos de Ciências do Mar 38: 19-27. <https://doi.org/10.32360/acmar.v38i1-2.6387>
Otsuka A, C Noriega, F Feitosa, G Borges, MF Montes, M Araujo & M Silva-Cunha. 2022. Characterization of microphytoplankton associations on the Amazon continental shelf and in the adjacent oceanic region. Journal of Sea Research 189:102271. <https://doi.org/10.1016/j.seares.2022.102271>
Paredes JF. 1992. Evaluation of the environmental effects of the industrial effluents from Tibrás - Titânio do Brasil in the area under influence of its underwater outfalls. In: Marine Disposal Systems: Proceedings of the IAWPRC Specialised Conference Held in Lisbon, Portugal, 20-22 November 1991. International Association on Water Pollution Research and Control, pp. 105-125.
Pereira MAG & GC Lessa. 2009. Varying patterns of water circulation in Canal de Cotegipe, Baía de Todos os Santos, Revista Brasileira de Geofísica 27(1): 103-119. <https://doi.org/10.1590/S0102-261X2009000100009>
Procopiak LK, LF Fernandes & FH Moreira. 2006. Diatomáceas (Bacillariophyta) marinhas do Paraná, Sul do Brasil: lista de espécies com ênfase em espécies nocivas. Biota Neotropica 6(3): 1-28. <https://doi.org/10.1590/S1676-06032006000300013>
Proença LAO, MS Tamanaha & RS Fonseca. 2009. Screening the toxicity and toxin content of blooms of the Cyanobacterium Trichodesmium erythraeum (Ehrenberg) in Northeast Brazil. Journal of Venomous Animals and Toxins including Tropical Diseases 15(2): 204-215. <https://doi.org/10.1590/S1678-91992009000200004>
Queiroz RL, FP Brandini & FM Pellizzari. 2004. Dynamics of microalgal communities in the water-column/sediment interface of the inner shelf off Parana State, Southern Brazil. Brazilian Journal of Oceanography 52(3-4): 183-194. <http://dx.doi.org/10.1590/S1679-87592004000300002>
Reynolds CS. 2006. Ecology of phytoplankton, 507 pp. Cambridge University Press, New York.
Rezende LF, PA Silva, M Cirano, A Peliz & J Dubert. 2011. Mean circulation, seasonal cycle, and eddy interactions in the Eastern Brazilian Margin, a Nested ROMS Model. Journal of Coastal Research 27(2): 329-347. <https://doi.org/10.2112/JCOASTRES-D-10-00059.1>
Rochelle-Newall EJ, VT Chu, O Pringault, D Amouroux, R Arfi, Y Bettarel, T Bouvier, C Bouvier, P Got, TMH Nguyen, X Mari, P Navarro, TN Duong, TTT Cao, TT Pham, S Ouillon & JP Torréton. 2011. Phytoplankton distribution and productivity in a highly turbid, tropical coastal system (Bach Dang Estuary, Vietnam). Marine Pollution Bulletin 62(11): 2317-2329. <https://doi.org/10.1016/j.marpolbul.2011.08.044>
Sagert S, T Rieling, A Eggert & H Schubert. 2008. Development of a phytoplankton indicator system for the ecological assessment of brackish coastal waters (German Baltic Sea coast). Hydrobiologia 611: 91-103. <https://doi.org/10.1007/s10750-008-9456-3>
Santana R, CEP Teixeira & GC Lessa. 2018. The impact of different forcing agents on the residual circulation in a tropical estuary: Baía de Todos os Santos, Brazil. Journal of Coastal Research 34(3): 544-558. <https://doi.org/10.2112/JCOASTRES-D-17-00044.1>
Santos FM, GC Lessa, M Cirano & CAD Lentini. 2014. Localized coastal upwelling at the Brazil Current formation zone (13°S). In: Proceedings of the 17th Physics of Estuaries and Coastal Seas (PECS) Conference: XVII. Simpósio Brasileiro de Sensoriamento Remoto - SBSR, João Pessoa-PB, Brasil, pp. 4535-4542.
Santos LPN, HMJ Affe & JMC Nunes. 2020. Microfitoplâncton na Baía de Todos os Santos (Brasil): composição, diversidade e abundância em um curto período de tempo. Acta Botanica Malacitana 45: 27-36. <https://doi.org/10.24310/abm.v45i.5301>
Sañudo-Wilhelmy SA, AB Kustka, CJ Goblerm & DA Hutchins. 2001. Phosphorus limitation of nitrogen fixation by Trichodesmium in the central Atlantic Ocean. Nature 411: 66-69. <https://doi.org/10.1038/35075041>
Shannon CE & WW Weaver. 1963. The mathematical theory of communications, 117 pp. University of Illinois Press, Urbana.
Silva MHD, MDGG Silva-Cunha, JZDO Passavante, CKDS Grego & K Muniz. 2009. Estrutura sazonal e espacial do microfitoplâncton no estuário tropical do rio Formoso, PE, Brasil. Acta Botanica Brasilica 23(2): 355-368. <http://dx.doi.org/10.1590/S0102-33062009000200007>
Silveira ICA, GR Flierl & WS Brown. 2000. Dynamics of separating Western Boundary Currents. Journal of Physical Oceanography 29: 129-144. <https://doi.org/10.1590/S0102-33062009000200007>
Siqueira A, HE Kolm & FP Brandini. 2006. Offshore distribution patterns of the Cyanobacterium Trichodesmium erythraeum Ehrenberg and associates phyto and bacterioplankton in the Southern Atlantic Coast (Paraná-Brazil). Brazilian Archives of Biology and Technology 49: 323-337.
Spungin D, I Berman-Frank & L Orly. 2014. Trichodesmium’s strategies to alleviate phosphorus limitation in the future acidified oceans. Environmental Microbiology 16: 1935-1947. <http://dx.doi.org/10.1111/1462-2920.12424>
Ter Braak CJF. 1986. Canonical correspondence analysis: a new eigenvector technique for multivariate gradient analysis. Ecology 67(5): 1167-1179. <https://www.jstor.org/stable/1938672>
Thévenin MR, J Pereira & GC Lessa. 2019. Shelf-break upwelling on a very narrow continental shelf adjacent to a western boundary current formation zone. Journal of Marine Systems 194: 52-65. <https://doi.org/10.1016/j.jmarsys.2019.02.008>
Thompson PA, TD O’brien, HW Paerl, BL Peierls, PJ Harrison & M Robb. 2015. Precipitation as a driver of phytoplankton ecology in coastal waters: a climatic perspective. Estuarine Coastal and Shelf Science 162: 119-129. <http://dx.doi.org/10.1016/j.ecss.2015.04.004>
Throndsen J, GR Hasle & K Tangen. 2007. Dinoflagellates-Dinophyta. In: Throndsen J, GR Hasle & K Tangen (eds). Phytoplankton of Norwegian coastal waters, pp. 41-110. Almater Forlag AS, Oslo.
Tiffany MA & DU Hernández-Becerril. 2005. Valve development in the diatom family Asterolampraceae HL. Smith 1872. Micropaleontology 51(3): 217-258. <https://doi.org/10.2113/51.3.217>
Tomas CR. 1997. Identifying marine phytoplankton, 858 pp. Academic Press, Miami.
Utermöhl H. 1958. Zur Vervollkommnung der quantitativen Phytoplankton-Methodik. Mitteilungen der Internationalen Vereinigung für Theoretische und Angewandte Limnologie 9: 1-38.
Wood EJF. 1968. Dinoflagellates of the Caribbean Sea and adjacent areas, 143 pp. University of Miami Press, Florida.
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2024 Helen Michelle de Jesus Affe, Márcio Ferreira dos Santos, José Marcos de Castro Nunes, Francisco Kelmo Oliveira dos Santos, Christiane Sampaio Souza, Paulo de Oliveira Mafalda Júnior
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial 4.0.
• Los autores que publican en la RBMO transfieren sus derechos de publicación a la Universidad de Valparaíso, conservando los derechos de propiedad intelectual para difundir ampliamente el artículo y la revista en cualquier formato.
• La RBMO autoriza el uso de figuras, tablas y extractos breves de su colección de manuscritos, en trabajos científicos y educacionales, siempre que se incluya la fuente de información.